

2020 ANNUAL DRINKING WATER QUALITY REPORT

SAGUARO VIEW MANAGEMENT

Public Water System Number: AZ04-07-169

JANUARY 1, 2016 - DECEMBER 31, 2020

FIVE YEAR MONITORING PERIOD AND

LAB SAMPLE TEST RESULTS

REPORT DATE: JULY 1. 2021

We are pleased to present to you this year's Annual Water Quality Report. This report is designed to inform you

about the quality of your water & the services we deliver to you everyday. Our constant goal is to provide you with a safe and dependable supply of quality drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

The water source for **SAGUARO VIEW MANAGEMENT** is groundwater from a well that draws from the Lower Agua Fria River Basin within the Phoenix AMA. Our water supply is a pumped groundwater single point of entry system consisting of the following: a deep well with a submersible pump, one (1) 100,000 gallon and one (1) 40,000 gallon storage tanks for a total storage capacity of 140,000 gallons, two (2) 3,000 gallon HP (Pressure) tanks pressure booster facility and related PVC pipe distribution system.

Disinfection treatment is provided by an automatic liquid chlorination system.

IS YOUR DRINKING WATER SAFE? Yes. This community water system routinely monitors for contaminants in your drinking water according to Federal and State laws. The results of our monitoring are for the period of **January 1, 2016 through December 31, 2020.** Last year, as in years past, your tap water has met all **U.S. Environmental Protection Agency (EPA)** and State drinking water health standards. This cws vigilantly safeguards its water supplies and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

DO YOU NEED TO TAKE PRECAUTIONS? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. **EPA/Centers for Disease Control (CDC)** guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the **Safe Water Drinking Hotline (800-426-4791)**.

WHERE YOUR WATER COMES FROM & POTENTIAL SOURCES OF CONTAMINATION: The

sources of your drinking water include rivers, lakes, reservoirs, streams, ponds, springs & wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic chemical contaminants, including Synthetic and Volatile Organic Chemicals (SOC's and VOC's), which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

SOURCE WATER ASSESSMENT & its AVAILABILITY: On November 7, 2002 the **Arizona Department of Environmental Quality (ADEQ)** completed a source water assessment for the well used by this CWS. The Assessment reviewed the adjacent land uses that may pose a potential risk to the sources. These risks include, but are not limited to, gas stations, landfills, dry cleaners, agriculture fields, waste water treatment plants, and mining activities. Once ADEQ identified the adjacent land uses, they were ranked as to their potential to affect the water source. Based on the information currently available on the hydrogeologic settings and the adjacent land uses that are in the specified proximity of the drinking water source(s) of this cws, ADEQ has given a low risk designation for the degree to which this public water system drinking water source(s) are protected. A low risk designation

indicates that most source water protection measures are either already implemented, or the hydrogeology is such that the source water protection measures will have little impact on protection.

The complete Assessment is available for inspection at the **Arizona Department of Environmental Quality, 1110 W. Washington, Phoenix, Arizona 85007**, between the hours of 8:00 a.m. and 5:00 p.m. Electronic copies are available from ADEQ Records Center. For more information, call this CWS at the number found on the last page of this report or visit the ADEQ's **Source Water Assessment and Protection Unit** website at: www.azdeq.gov/environ/water/dw/swap.html

POBLACIONES DE DISCURSO DE NON-ENGLISH PERSONAS: Para la información sobre la importancia de este informe de la confianza de consumidor yo para obtener una copia traducida yo ayuda en la lengua apropiada, notifique por favor este CWS en el número encontrado en la página pasada de este informe o usted puede entrar en contacto con a este operador de sistemas certificado CWS's del agua, **Joe Fiano** de los operadores del tratamiento de aguas y de los consultores ambientales en **(602) 501-0713**

ADDITIONAL CONTAMINENT INFORMATION: We have tested for many contaminants. The contaminants that we detected are defined below. The results of all the contaminants that we tested for from the past five years can be found in the **"Water Quality Data Table"** portion of this report.

Drinking Water Contaminant

<u>Microbial contaminants</u>, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. **Pesticides and herbicides** that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses.

<u>Organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.

Radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities.

<u>DISINFECTANTS & DISINFECTION BYPRODUCTS ARE CONTROLLED:</u> Well & Surface water is safely disinfected with chlorine before being delivered to you, the consumer. Federal law requires a minimum chlorine disinfectant level of 0.2 ppm in the water. There also is a <u>Maximum Residual Disinfectant Level (MRDL)</u> allowed in the water in the distribution system as it travels to your tap.

While it is essential to disinfect the water to prevent widespread outbreaks of serious diseases & comply with the EPA standards, the use of disinfectants can create **Disinfection Byproducts (DBP'S)**, which are formed when natural organic matter such as **Total Organic Carbon (TOC)** in water reacts with chemicals used for disinfection.

In most cases, groundwater contains very little TOC, therefore, disinfection byproducts formation are not usually a problem from water coming from wells. To determine formation of DBP's in the distribution system, the company monitors for **Trihalomethanes (TTHM's)** and **Haloacetic Acids (HAA5's)** which are DBP's that may cause long-term health effects at certain concentrations. TTHM's & HAA5's are sampled throughout the distribution system monthly and reported to ADEQ on a quarterly basis. Then, a running annual average of all samples is calculated to determine compliance with the **Maximum Contaminant Level (MCL)**. Based on those sampling criteria, this CWS's running annual average is below the MCL.

ARSENIC: While your drinking water meets EPA's standard for Arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

NITRATE: Nitrate in drinking water at levels above the MCL of 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause "blue baby syndrome" Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant woman and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. **Saguaro View Management** is responsible for providing high quality drinking water, but can not control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from **Safe Drinking Water Hotline** or at **www.epa.gov/safewater/lead.**

Infants & children, who drink water containing lead in excess of the Action Level of 0.15 mg/L, could experience delays in their physical or mental development. Children could show slight deficits in attention span & learning abilities. Adults who drink this water over many years could develop kidney problems or high blood pressure.

COPPER: Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level of 1.3 mg/L over a relatively short amount of time could experience gastrointestinal distress. Some people who drink this water over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal physician.

♦ WATER QUALITY DATA TABLE ♦								
Microbiological	Violation Y or N	Number of Samples Present <u>OR</u> Highest Level Detected	Absent (A) or Present (P) <u>OR</u> Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination	
Total Coliform Bacteria (System takes ≥ 40 monthly samples) 5% of monthly samples are positive; (System takes ≤ 40 monthly samples) 1 positive monthly sample	No	0	Absent	0	0	Jan – Dec 2020	Naturally Present in Environment	
Fecal coliform and E. Coli (TC Rule)	No	0	Absent	0	0	Jan – Dec 2020	Human and animal fecal waste	
Fecal Indicators (E. coli, enterococci or coliphage) (GW Rule)	No	N/A	N/A	TT	n/a	N/A	Human and animal fecal waste	
Disinfectants	Violation Y or N	Running Annual Average (RAA)	Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination	
Chlorine (ppm)	No	0.6000	0.5500-0.6667	MRDL = 4	MRDLG = 4	Jan – Dec 2020	Water additive used to control microbes	
Disinfection By-Products	Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination	
Haloacetic Acids (ppb) (HAA5)	No	< 1.0	< 1.0	60	n/a	July 2020	Byproduct of drinking water disinfection	
Total Trihalomethanes (ppb) (TTHM)	No	3.2	3.2	80	n/a	July 2020	Byproduct of drinking water disinfection	
Lead & Copper	Violation Y or N	90 th Percentile AND Number of Samples Over the AL	Range of All Samples (L-H)	AL	ALG	Sample Month & Year	Likely Source of Contamination	
Copper (ppm)	No	90 th Percentile = 0.22	0.013-0.25	AL = 1.3	ALG = 1.3	July 2020	Corrosion of household plumbing systems; erosion of natural deposits	
Lead (ppb)	No	90 th Percentile = 0.3	<0.50-1.1	AL = 15	0	July 2020	Corrosion of household plumbing systems; erosion of natural deposits	
Inorganic Chemicals (IOC)	Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination	

	1	1		ı			D: 1 c
Antimony (ppb)	No	< 1	< 1	6	6	June 2017	Discharge from petroleum refineries; fire retardants; ceramics, electronics and solder
Arsenic (ppb)	No	3.8	3.8-3.8	10	0	January & May 2020	Erosion of natural deposits, runoff from orchards, runoff from glass and electronics production wastes
Barium (ppm)	No	0.15	0.15-0.15	2	2	May 2020	Discharge of drilling wastes; discharge from metal refineries; Erosion of natural deposits
Beryllium (ppb)	No	< 1	< 1	4	4	June 2017	Discharge from metal refineries and coal- burning factories; discharge from electrical, aerospace, and defense industries
Cadmium (ppb)	No	<0.5	<0.5	5	5	June 2017	Corrosion of galvanized pipes; natural deposits; metal refineries; runoff from waste batteries and paints
Chromium (ppb)	No	6.2	6.2-6.2	100	100	May 2020	Discharge from steel and pulp mills; Erosion of natural deposits
Cyanide (ppb)	No	< 25	< 25	200	200	June 2017	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories
Fluoride (ppm)	No	0.42	0.42-0.42	4	4	May 2020	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Mercury (ppb)	No	< 0.2	< 0.2	2	2	June 2017	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills and cropland.
Nitrate (ppm)	No	3	3.4-3.4	10	10	January & May 2020	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium (ppb)	No	< 5	< 5	50	50	June 2017	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Sodium	No	76	76	N/A	N/A	June 2017	Erosion of natural deposits.
Thallium (ppb)	No	< 1	< 1	2	0.5	June 2017	Leaching from ore- processing sites; discharge from electronics, glass, and drug factories
Volatile Organic Chemicals (VOC)	No	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Benzene (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from factories; leaching from gas storage tanks and landfills

Consumer Confidence Report

2,4-D (ppb)	No	< 0.10	< 0.10	70	70	June 2017	Runoff from herbicide used on row crops
Synthetic Organic Chemicals (SOC)	Violation Y or N	Running Annual Average (RAA) <u>OR</u> Highest Level Detected	Range of All Samples (L-H)	MCL	MCLG	Sample Month & Year	Likely Source of Contamination
Xylenes (ppm)	No	< 0.0005	< 0.0005	10	10	June 2017	Discharge from petroleum or chemical factories
Vinyl Chloride (ppb)	No	< 0.3	< 0.3	2	0	June 2017	Leaching from PVC piping; discharge from chemical factories
Toluene (ppm)	No	< 0.0005	< 0.0005	1	1	June 2017	Discharge from petroleum factories
Trichloroethylene (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from metal degreasing sites and other factories
1,1,2-Trichloroethane (ppb)	No	< 0.5	< 0.5	5	3	June 2017	factories Discharge from industrial chemical factories
1,1,1-Trichloroethane (ppb)	No	< 0.5	< 0.5	200	200	June 2017	Discharge from metal degreasing sites and other
1,2,4-Trichlorobenzene (ppb)	No	< 0.5	< 0.5	70	70	June 2017	cleaners Discharge from textile-finishing factories
Tetrachloroethylene (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from factories and dry
Styrene (ppb)	No	< 0.5	< 0.5	100	100	June 2017	Discharge from rubber and plastic factories; leaching from landfills
Ethylbenzene (ppb)	No	< 0.5	< 0.5	700	700	June 2017	factories Discharge from petroleum refineries
1,2-Dichloropropane (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from industrial chemical
Dichloromethane (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from pharmaceutical and chemical factories
trans-1,2-Dichloroethylene (ppb)	No	< 0.5	< 0.5	100	100	June 2017	Discharge from industrial chemical factories
cis-1,2-Dichloroethylene (ppb)	No	< 0.5	< 0.5	70	70	June 2017	Discharge from industrial chemical factories
1,1-Dichloroethylene (ppb)	No	< 0.5	< 0.5	7	7	June 2017	Discharge from industrial chemical factories
1,2-Dichloroethane (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from industrial chemical factories
p-Dichlorobenzene (ppb)	No	< 0.5	< 0.5	75	75	June 2017	Discharge from industrial chemical factories
o-Dichlorobenzene (ppb)	No	< 0.5	< 0.5	600	600	June 2017	Discharge from industrial chemical factories
Chlorobenzene (ppb)	No	< 0.5	< 0.5	100	100	June 2017	Discharge from chemical and agricultural chemical factories
Carbon tetrachloride (ppb)	No	< 0.5	< 0.5	5	0	June 2017	Discharge from chemical plants and other industrial activities

Consumer Confidence Report

2,4,5-TP (Silvex) (ppb)	No	< 0.20	< 0.20	50	50	June 2017	Residue of banned herbicide
Atrazine (ppb)	No	<0.05	< 0.05	3	3	June 2017	Runoff from herbicide used on row crops
Alachlor	No	<0.1	<0.1	2	0	June 2017	Runoff from herbicide used on row crops.
Benzo (a) pyrene (PAH) (ppt)	No	<20	<20	200	0	June 2017	Leaching from linings of water storage tanks and distribution lines
Carbofuran (ppb)	No	< 0.50	< 0.50	40	40	June 2017	Leaching of soil fumigant used on rice and alfalfa
Chlordane (ppb)	No	< 0.10	< 0.10	2	0	June 2017	Residue of banned termiticide
Dalapon (ppb)	No	<1	<1	200	200	June 2017	Runoff from herbicide used on rights of way
Di (2-ethylhexyl) adipate (ppb)	No	< 0.60	< 0.60	400	400	June 2017	Discharge from chemical factories
Di (2-ethylhexyl) phthalate (ppb)	No	< 0.60	< 0.60	6	0	June 2017	Discharge from rubber and chemical factories
Dibromochloropropane (ppt)	No	< 10	<10	200	0	June 2017	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards
Dinoseb (ppb)	No	< 0.20	< 0.20	7	7	June 2017	Runoff from herbicide used on soybeans and vegetables
Diquat (ppb)	No	< 0.40	< 0.40	20	20	June 2017	Runoff from herbicide use
Dioxin [2,3,7,8-TCDD] (ppq)	No	<0.5	<0.5	30	0	June 2017	Emissions from waste incineration and other combustion; discharge from chemical factories
Endothall (ppb)	No	<5.0	<5.0	100	100	June 2017	Runoff from herbicide use
Endrin (ppb)	No	< 0.01	< 0.01	2	2	June 2017	Residue of banned insecticide
Ethylene dibromide (ppt)	No	<10	<10	50	0	June 2017	Discharge from petroleum refineries
Glyphosate (ppb)	No	< 6.0	< 6.0	700	700	June 2017	Runoff from herbicide use
Heptachlor (ppt)	No	< 10	< 10	400	0	June 2017	Residue of banned temiticide
Heptachlor epoxide (ppt)	No	< 10	< 10	200	0	June 2017	Breakdown of heptachlor
Hexachlorobenzene (ppb)	No	<0.05	<0.05	1	0	June 2017	Discharge from metal refineries and agricultural chemical factories
Hexachlorocyclo pentadiene (ppb)	No	< 0.05	< 0.05	50	50	June 2017	Discharge from chemical factories
Lindane	No	<10	<10	200	200	June 2017	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor (ppb)	No	< 0.05	< 0.05	40	40	June 2017	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate] (ppb)	No	< 0.05	< 0.05	200	200	June 2017	Runoff/leaching from insecticide used on apples,

							potatoes and tomatoes
Pentachlorophenol (ppb)	No	< 0.04	< 0.04	1	0	June 2017	Discharge from wood preserving factories
Picloram (ppb)	No	<.01	< 0.1	500	500	June 2017	Herbicide runoff
Simazine (ppb)	No	< 0.05	< 0.05	4	4	June 2017	Herbicide runoff
Toxaphene (ppb)	No	< 0.5	< 0.5	3	0	June 2017	Runoff/leaching from insecticide used on cotton and cattle

♦ IMPORTANT DRINKING WATER DEFINITIONS ♦

AL = **Action Level** - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ALG = Action Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. The ALG allows for a margin of safety.

MCL = Maximum Contaminant Level - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water.

MCLG = Maximum Contaminant Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health.

MFL - Million fibers per liter.

MRDL = **Maximum Residual Disinfectant Level** - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG = Maximum Residual Disinfection Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants. $ppm \times 1000 = ppb$

MREM = **Millirems** per year – a measure of radiation absorbed by the body

N/A = Not Applicable – Sampling was not completed by regulation or was not required

NTU = Nephelometic Turbidity Units – a measure of water clarity

PCi/L= Picocuries per Liter - a measure of the Radioactivity in the water

PPM = Parts per Million, or Milligrams per Liter (mg/L)

PPB = Parts per Billion, or Micrograms per Liter (μ g/L)

PPT = Parts per Trillion, or Nanograms per Liter

PPO = Parts per Quadrillion, or Picograms per Liter

RAA = Running Annual Average: An average of monitoring results for the previous 12 calendar months.

TT = Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.

Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

For more information, please contact:

SAGUARO VIEW MANAGEMENT CO.

c/o Colby Management 17220 N. Boswell Blvd Suite #140 Sun City, AZ 85373-1984

Mr. Joseph V. Fiano, President & Certified Operator Water Treatment Operators, Inc. 14615 N. Fountain Hills Blvd. Fountain Hills, AZ 85268 (480) 837-6438 - Office

ppb x 1000 = ppt

ppt x 1000 = ppq